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Abstract. Reliability prediction mechanism plays an important role in select-

ing reliable peers for blockchain users. Traditionally, reliability prediction ap-

proaches are performed by collecting a large amount of user data and conduct-

ing centralized training. Although these methods can achieve high accuracy, they

may lead to malicious attacks by third-party services on users’ private data. As a

privacy-preserving approach to addressing privacy leakage caused by centralized

training, federated learning can enable users to learn a shared prediction model

by providing gradients to a central server instead of raw data. However, uploading

complete gradients directly may be exposed to a gradient attack and cause privacy

leakage. To address the privacy data leakage from centralized training and pre-

vent the attack threat from uploading gradients, we propose a privacy-preserving

and high-accuracy blockchain reliability prediction model, namely FL-MFGM.

Based on federated learning architecture, the model protects user privacy by up-

loading the gradients of matrix factorization. Specifically, in order to enhance

the privacy-preserving capability of our model, we employ gradient compression

with momentum correction for federated matrix factorization. To validate the ef-

fectiveness of our approach, sufficient experiments are conducted, which indicate

that our approach can achieve higher prediction accuracy than other approaches

with privacy-preserving based on federated learning architecture.

Keywords: blockchain; reliability prediction; privacy protection; federated learn-

ing; matrix factorization

1 Introduction

Blockchain technology has received wide attention from industry and academia because

of its decentralized, persistent, and auditable features. These features are derived from

the working mechanism of blockchain system. Blockchain is a shared digital ledger and

each transaction is public[1]. The communication technology of the system is Peer-to-

Peer (P2P), where communication between peers does not need to rely on a third party.

Each participant peer in such a system maintains a blockchain and acts in the roles of

both client and server, i.e., each peer can request content or services from other peers

and act as a server to provide content or services to other peers[2]. The way to maintain

the blockchain is through a consensus mechanism. Once a peer finds a proof-of-work,

it broadcasts the block to all peers and receives a reward[1].
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In order to get rewards[3] or verify transactions[4], users in the blockchain network

need to request the latest block information from neighboring peers. However, not all

the peers would return the latest block information because of the network latency,

malicious attacks, etc. If a peer returns incorrect or outdated block information, it would

waste the users’ time and resources. The users may even be vulnerable to being attacked

as a result[3].

In order for users to select more secure and reliable blockchain peers, one simple

solution is to use known reliability information (e.g., successful request rates from users

to peers) to predict the unknowns. Many existing approaches are designed for central-

ized training, which collects users’ raw data in the central servers. However, large-scale

collection of sensitive data entails risks[5]. For example, malicious third parties can

steal sensitive data by attacking the server and untrustworthy data collectors may dis-

close users’ private data[6]. Therefore, it is necessary to enhance the privacy protection

of reliability prediction.

Federated learning is an effective method to protect user privacy. Current researches

based on federated learning include edge computing, Internet of Things, and smart

healthcare[7][8][9]. The main idea of federated learning is to enable users to leave the

training data distributed on the mobile devices and learn a shared model by aggregating

locally-computed updates (e.g., gradient information)[10]. However, the canonical fed-

erated learning involves two big challenges: First, shared gradients publicly may lead

to leakage of private training data[11]; Second, communication in federated networks

can be much more expensive than that in classical data center environments because of

comprised of a massive number of devices (e.g., millions of smartphones)[12].

In this paper, we propose a privacy-preserving and high-accuracy blockchain relia-

bility prediction model based on federated matrix factorization with gradient compres-

sion and momentum correction (FL-MFGM). FL-MFGM achieves privacy preservation

in blockchain reliability prediction by federated matrix factorization and gradient com-

pression. The main contributions of this paper are summarized as follows:

(1) We propose a blockchain reliability prediction model based on federated matrix

factorization to protect user privacy.

(2) We design a gradient compression method to reduce the uploaded gradients, which

enables our model to defend against gradient attacks.

(3) We adopt momentum correction to ensure the prediction accuracy.

(4) We verify the effectiveness of our model through sufficient experiments.

The rest of the paper is structured as follows: Section 2 introduces the related work.

Section 3 includes details of the approach in this paper. Section 4 elaborates on the

experiments and discusses the results of the experiments. Section 5 concludes the work

of this paper and gives the vision for the future work.

2 Related Work

This section focuses on reviewing current approaches to blockchain reliability predic-

tion and privacy protection based on federated learning, which are relevant to this paper.
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Blockchain Reliability Prediction Current approaches to blockchain reliability pre-

diction are based on studies of software reliability prediction. Zheng et al.[4] proposed

a hybrid blockchain reliability prediction (H-BRP), which takes blockchain-related fac-

tors (e.g., block hash, block height) into consideration and finds the similarity among

users and among peers to do the prediction. However, H-BRP is a centralized training

model that must collect the data of all users to calculate the similarity between peers,

which may cause sensitive data leakage. Xu et al.[13] proposed a high-accuracy relia-

bility prediction approach for block-chain services under BaaS (BSRPF), using matrix

factorization. BSRPF is also a centralized training model, but it inspired our work in

this paper that we can use matrix factorization based on federated learning to predict

reliability effectively and protect user privacy by not sharing raw data.

Privacy Protection Based on Federated Learning Federated learning can signifi-

cantly reduce privacy and security risks by sharing model updates instead of uploading

a local dataset[10]. However, it may still reveal sensitive information to third parties

or central servers[12]. Zhu et al.[11] demonstrated that attackers can extrapolate the

local data from the high-density gradient communication. They also summarize the

practical methods to defend against this kind of attack effectively without a dropped

performance, including gradient compression and homomorphic encryption.

Homomorphic encryption is a kind of cryptology that is the most secured defense.

But it has limitations: the gradients required should be an integer[5], homomorphic

encryption is only for parameter servers[14]. Gradient compression can be used univer-

sally because it has no limitations on gradients or servers and is easy to be implemented.

Many studies have focused on two aspects to optimize gradient compression: the choice

of sparsification threshold and the problem of accuracy loss and low convergence rate.

Strom Nikko[15] developed a gradient compression method with a fixed threshold.

But it is difficult to choose an available threshold due to the variation of gradients. Tao

et al.[16] proposed an approach to solving this problem. They set a threshold according

to gradient average value and designed a momentum residual accumulation for tracking

the residual gradients. It can also recover the low convergence caused by gradient spar-

sification. However, the convergence comes with nearly a thousand iterations, which

was exceeding our expectations. Lin et al.[17] proposed a deep gradient compression

(DGC), using warm-up training and gradient sparsification with momentum correction

and gradient clipping to solve the problem of low accuracy and low convergence rate.

DGC achieves a gradient compression ratio of about 600× without losing accuracy.

Although the existing reliability prediction methods of blockchain have achieved

relatively high accuracy, these methods are based on centralized training and lack con-

sideration for user privacy protection, which may be attacked by third-party services.

To address the privacy data leakage from centralized training and prevent the attack

threat, inspired by federal learning, we focus on the privacy protection of blockchain

reliability prediction in this paper, hoping to ensure the accuracy of prediction while

protecting users’ privacy.
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3 Privacy-preserving Blockchain Reliability Prediction Model

In this section, we first present a framework of our FL-MFGM model in Section 3.1.

Then, We illustrate the federated matrix factorization approach for our model in Section

3.2 and introduce how to achieve gradient compression with momentum correction for

our model in Section 3.3. Finally, we show the implementation in Section 3.4.

peers
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1. request

prection model

 6. prediction 

results

prection model prection model

cloud server

4. local training and gradients upload

5. gobal model transmission

3. data save

local data

blockchain
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Fig. 1. The framework of FL-MFGM model

3.1 Model Framework

The main idea of FL-MFGM is that users train the model respectively using the data

stored locally, and upload the gradients generated by the local model update to the

central server, which updates the global model and transmit it to users. As the iterations

proceed, the model gradually converges, and users can use the model to predict the

reliability of candidate peers for selecting a more reliable peer. As shown in Fig. 1, the

model framework mainly consists of six steps:

(1) Users randomly request blockchain data from candidate peers over a period of time.

(2) The requested peers respond and return data (e.g., block hash, block height).

(3) Users compile the information responded from peers and save the data locally.

(4) Users take a certain number of iterations to update the local model based on their

local data. After local training, they compute gradients and send them to the central

server.

(5) The central server aggregates the gradients from users and updates the global model.

The improved global model will be transmitted to users for the next training.

(6) After the model becomes converged, users can predict the reliability of candidate

peers and select the ones that meet their reliability requirements.
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It is worth noting that during the model training, the fourth and fifth steps will con-

duct for multiple rounds, where users and the central server will keep in communication

until the model becomes converged.

3.2 Federated Matrix Factorization for Blockchain Reliability Prediction

To predict the reliability of blockchain while protecting user privacy, we propose a ma-

trix factorization model based on federated learning. Matrix factorization is a typical

factor analysis model. Its main idea is to predict the unknowns in the matrix by map-

ping both users and peers into a joint latent factor space of a low dimensionality d.

And federated learning enables users to have a shared model without uploading raw

data, which achieves protecting users’ privacy. Thus, our federated matrix factorization

model incorporates the features of matrix factorization and federated learning.

The proposed model training uses the successful request rates from users. After fin-

ishing the request testing mentioned in Section 3.1, the SuccessRate matrix which rep-

resents successful request rates to peers is generated. It’s worth noting that, the higher

successful request rate indicates that the peer is more reliable to the user[4].

We update the matrix factorization model, including user profile matrix and peer

profile matrix by the SuccessRate matrix. To prevent the server from directly knowing

users’ raw data or learned profiles, users will update the user profile matrix and peer

profile matrix only locally using their SuccessRate matrix, and share gradients of peer

profile matrix to the server for updating the global model[18].

We assume there are N users and M peers. The SuccessRate matrix for user i is

denoted as Ri ∈ R1×M , and the element of column j of Ri denotes the successful re-

quest rate from user i to peer j. For user i, the local matrix factorization model consists

latent user factors U i ∈ R1×d and latent peer factors P i ∈ RM×d. Thus, we aim to

minimize the objective function with regularization terms[19]:

Li =
1

2

M
∑

j=1

Iij

(

Ri
j − U i

(

P i
j

)T
)2

+
λU

2
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λP

2
‖P i‖2F , (1)

where Iij acts as an indicator that equals to 1 if Ri
j is observed, and 0 otherwise. λu and

λp are the regularization coefficients to control the degree of regularization, and ‖ · ‖2F
denotes the Frobenius norm[19]. We employ the stochastic gradient descent method

(SGD)[20] to train our model. For each successful rate from user i to requested peer j,

we have the following pairwise loss function:
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where ‖ · ‖22 denotes the Eulerian norm. Instead of directly minimizing L, SGD relaxes

to minimize the pairwise loss function ℓ [21]. We compute gradients of U i and P i
j

respectively:
∂ℓ

∂U i
=

(

U i
(

P i
j

)T
−Ri

j

)

P i
j + λuU

i (3)

∂ℓ

∂P i
j

=
(

U i
(

P i
j

)T
−Ri

j

)

U i + λpP
i
j (4)
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Then the local matrix U i and P i would update using Eq.(5) and Eq.(6) respectively:

U i = U i − α ·
∂ℓ

∂U i
(5)

P i
j = P i

j − α ·
∂ℓ

∂P i
j

, (6)

where α is the learning rate of our model.

The local training will perform for a certain number of iterations to reduce the

rounds of communication needed between the server and users. After local updates,

the user computes gradients for P i and sends them to the server. To distinguish the

global model from the local model, we use P̂ to denote the global model and P i to

denote the local model of user i. The gradients generated by the local training of user i

are denoted as:

gi = P̂ − P i (7)

The central server aggregates the gradients uploaded by users and updates the global

model P̂ :

P̂ = P̂ −
1

N

N
∑

i=1

gi (8)

After the global model has been updated, the central server broadcasts it to users

for the next training round. During the training process, the server keeps providing the

global model for all the users to download. The training rounds and model updates will

keep going until the model becomes converged. As a result, all the users can gain an

effective blockchain reliability prediction model without sharing their raw data, which

will achieve the preservation of private data.

3.3 Gradient Compression

To protect users’ privacy, we transmit the gradients for model updating instead of users’

raw data during the training process. However, sharing gradients is considered insecure

in federated learning. For example, malicious third parties can deduce the user’s raw

data from the shared gradients[11]. To enhance the privacy preservation of our model

and defend against gradient attacks, we proposed gradient compression with momentum

correction.

Gradient Sparsification Gradient compression only uploads the important gradients

which are larger than a threshold[17]. Due to the uncertainty of data, it is difficult to

set a fixed threshold. Thus, we set a sparsity to choose the larger gradients instead of

a threshold. We assume that the gradient matrix generated by user i is gi, and set a

sparsity ratio ∈ (0, 1]. The proportion of uploaded gradients to the overall number is

the ratio, whose values are all larger than the gradients that do not need to be uploaded.

Especially, when ratio fetches 1, all the gradients will be uploaded.
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Fig. 2. FL-MFGM model training for user i

Momentum correction With the increasing of sparsity, the model becomes tougher

and tougher to converge[17], because gradient sparsification only retains the important

gradients. To solve this problem, we design a momentum correction method. The gra-

dients which are not available to be uploaded in the previous iteration will be saved on

the local device and accumulated with the newly gradients using momentum correction

method. We perform momentum correction locally before gradient sparsification. The

momentum correction method in iteration t is shown in Eq.(9) and Eq.(10).

u(i,t) = m · u(i,t−1) + g(i,t), v(i,t) = v(i,t) + u(i,t), g(i,t) = Sparsification
(

v(i,t)
)

,

(9)

where m is the momentum coefficient, u(i,t) denotes the result of momentum correc-

tion, g(i,t) is the gradients of this iteration, v(i,t) is used for subsequent sparsification

and accumulation, and Sparsification(v(i,t)) is for gradient compression. The details

of gradient compression is shown in Fig. 2. After determining the gradients to be up-

loaded, v(i,t) will store the gradients that have not been uploaded:

v(i,t) = v(i,t) − g(i,t) (10)

Fig. 2 is mainly a more detailed explanation of the model training. The “gradient

compression” part shows the workflow of the proposed gradient compression method

in one iteration. Based on the existing SuccessRate matrix and the global model, we

use matrix factorization to update model and compute gradients. We perform gradient

compression: According to the sparsity, the larger gradients will be uploaded, and the

remaining will be saved locally and accumulated with the newly computed gradients by

the momentum correction method. As to reduce the times of communication, the local

model training and update will perform a certain of rounds and then compute gradients

to upload. After the central server updates the model and transmits it to user i, user i

can update the training model and move on to the next iteration. Model training and

communication between the user and the central server will keep on until the model

converges.
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3.4 FL-MFGM Algorithm

The pseudo code of our FL-MFGM is shown in Algorithm 1.

Algorithm 1 FL-MFGM Algorithm

Input:

The dataset and parameters of training: {R,N, iteration,m, ratio}
Output: A convergence model P

1: Divide R into a training set and a test set {trainMatrix, testMatrix}
2: Initialize the user matrix U i and peer matrix P i for user i

3: u← 0, v ← 0

4: for t = 1 to iteration do

5: for i = 1 to N do

6: g(i,t) ← 0

7: U i, P i ← UserUpdate
(

U i, P i,Ri
)

8: g(i,t) ← P − P i

9: u(i,t) ← m · u(i,t−1) + g(i,t)

10: v(i,t) ← v(i,t−1) + u(i,t)

11: g(i,t) ← Sparsification
(

v(i,t), ratio
)

12: v(i,t) ← v(i,t) − g(i,t)

13: end for

14: P← 1
N

∑N

i=1 g
(i,t)

15: end for

16: return P

Specially, the iterative updating process of the global model decomposes into two parts

that are performed on the user side (Line 5 ∼ 13) and the server side (Line 14), respec-

tively. The global model updating will keep on until convergence. Especially, the model

updating operations on the user side are defined as a function UserUpdate
(

U i, P i,Ri
)

.

After the local model updating, users will compute the gradients which are required for

the model updating. Note that for newly computed gradients, we first accumulate them

with the remaining gradients of the previous iteration by momentum correction (Line

9 ∼ 10) and then conduct gradient sparsification (Line 11). The operations of gradient

sparsification are defined as a function Sparsification
(

v(i,t), ratio
)

, according to the

details described in the gradient sparsification part in Section 3.3. Another important

point is that the user would save the remaining gradients locally after gradient sparsi-

fication (Line 12). The uploaded gradients from users will be aggregated on the server

side and used for the global model updating (Line 14). As such, our model can protect

users’ privacy as it enables users to keep their raw data on device and compress the

uploaded gradients.

4 Experiments and Analysis

In this section, sufficient experiments are conducted in real-world datasets to answer

the following questions:
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Q1: Is our proposed approach effective for blockchain reliability prediction?

Q2: What is the effect of gradient compression and momentum correction on pre-

diction accuracy?

Q3: What is the impact of different sparsity on prediction accuracy?

Our experiments were conducted on an AMD Ryzen 5 3600 6-core processor and

8GB of RAM, running on Python 3.7 and windows 10 (64-bit). In the following sub-

sections, we will introduce the experimental settings, and then conduct experiments and

analysis according to the above three questions.

4.1 Experiment Settings

Dataset and parameter setting In this paper, we use the real dataset proposed by

Zheng et al.[4]. It is a 100 × 200 SuccessMate matrix between 100 blockchain users and

200 blockchain peers. It is worth noting that, the successful request rate range from 0 to

1 and the higher successful request rate indicates that peer j is more reliability to user

i. We use MaxRTT to indicate the maximum tolerable request round-trip time and use

MaxBlockBack to indicate the maximum tolerable return block backward to the latest

block[4]. We set four different combinations of MaxBlockBack and MaxRTT for our ex-

periments: <MaxBlockBack=0, MaxRTT=1000>, <MaxBlockBack=12, MaxRTT=1000>,

<MaxBlockBack=12, MaxRTT=2000>, <MaxBlockBack=100, MaxRTT=5000>, and

the density of the training matrix is set as Density = 30%, 50%, 65%, 95%.

Evaluation Metric We use the root mean square error (RMSE) to measure the differ-

ence between the predicted and real values. A smaller RMSE value represents higher

prediction accuracy. The formula for calculating the root mean square error is:

RMSE =

∑

(i,j,Ri,j)∈T

∣

∣

∣
R̂i,j −Ri,j

∣

∣

∣

|T |
, (11)

where Ri,j is the known real record value, which indicates the success rate of user i

to the peer j, R̂i,j denotes the success rate predicted by FL-MFGM, T indicates the

records in training set.

4.2 Prediction Accuracy Comparison (RQ1)

To verify the prediction accuracy of FL-MFGM, we compare it with some baseline

methods for reliability prediction: the user similarity-based prediction method UPCC[22],

the item similarity-based prediction method IPCC[23], the mixed user and item similarity-

based prediction method UIPCC[24], and the mixed block information-based prediction

method H- BRP[4]. We set the sparsity of FL-MFGM is 99% which means users can

only upload the top 1% of the large gradients. The results are shown in Table 1.

From Table 1, we can observe that RMSE of H-BRP is the lowest among the base-

line method and the performance of our FL-MFGM model is even better than H-BRP.

Concretely, for <MaxBlockBack=12, MaxRTT=1000>, the RMSE of FL-MFGM is

27.9%∼51.4% lower than that of H-BRP at different matrix densities, which means
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Table 1. Comparison of RMSE among FL-MFGM and baseline approaches

Parameter Method Density=30% Density=50% Density=65% Density=95%

MaxBlockBack=0

MaxRTT=1000

UPCC 0.2823 0.2791 0.2769 0.2758

IPCC 0.0821 0.0777 0.0764 0.0748

UIPCC 0.0851 0.0806 0.0791 0.0773

H-BRP 0.0791 0.0716 0.0711 0.0670

FL-MFGM 0.0637 0.0565 0.0399 0.0397

Improve.(%) 19.5% 21.1% 43.9% 40.7%

MaxBlockBack=12

MaxRTT=1000

UPCC 0.3627 0.3591 0.3566 0.3559

IPCC 0.1009 0.0949 0.0919 0.0920

UIPCC 0.1053 0.0994 0.0963 0.0961

H-BRP 0.1017 0.0908 0.0901 0.0834

FL-MFGM 0.0718 0.0655 0.0438 0.0466

Improve.(%) 29.4% 27.9% 51.4% 44.1%

MaxBlockBack=12

MaxRTT=2000

UPCC 0.3793 0.3775 0.3758 0.3760

IPCC 0.0810 0.0785 0.0765 0.0751

UIPCC 0.0887 0.0864 0.0845 0.0831

H-BRP 0.0641 0.0546 0.0528 0.0451

FL-MFGM 0.0461 0.0439 0.0330 0.0328

Improve.(%) 28.1% 19.6% 37.5% 27.3%

MaxBlockBack=100

MaxRTT=5000

UPCC 0.4595 0.4585 0.4569 0.4574

IPCC 0.0921 0.0887 0.0842 0.0774

UIPCC 0.1022 0.0993 0.0954 0.0895

H-BRP 0.0635 0.0547 0.0524 0.043

FL-MFGM 0.051 0.0478 0.0328 0.0327

Improve.(%) 19.7% 12.6% 37.4% 24.0%

that FL-MFGM achieves 27.9%∼51.4% improvement on prediction accuracy. And

for <MaxBlockBack=100, MaxRTT=5000>, FL-MFGM achieves 12.6%∼37.4% im-

provement on prediction accuracy. According to the results, our FL-MFGM approach

significantly outperforms the other approaches over RMSE. And as the density of the

training set increases, the RMSE of FL-MFGM decreases correspondingly indicating

that its prediction accuracy also increases. We verify that our FL-MFGM model can

achieve higher accuracy than existing approaches for blockchain reliability prediction.

4.3 Effect of Gradient Compression and Momentum Correction (RQ2)

Gradient compression is an important method to defend against gradient attacks. How-

ever, it would reduce the accuracy of the prediction due to the reduction of the uploaded

gradients. As discussed in Section 3.3, we recover the accuracy by momentum cor-

rection. To study the performance of our gradient compression method which contains

gradient sparsification and momentum correction, we compare the prediction accuracy

of FL-MFGM with two methods, named FL-MF and FL-MFG respectively. FL-MF

and FL-MFG are both blockchain reliability prediction approaches based on federated

matrix factorization. Compared with FL-MFGM, FL-MF performs without gradient

compression or momentum correction, and FL-MFG performs gradient compression

without momentum correction. And we set sparsity, ratio = 99%. The experimental

results are shown in Table 2.
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Table 2. Effect of gradient compression and momentum correction on prediction accuracy

Parameter Method Density=30% Density=50% Density=65% Density=95%

MaxBlockBack=0

MaxRTT=1000

FL-MF 0.0626 0.0569 0.0382 0.0382

FL-MFG 0.0687 0.0665 0.0794 0.0800

FL-MFGM 0.0637 0.0565 0.0399 0.0397

MaxBlockBack=12

MaxRTT=1000

FL-MF 0.0717 0.0679 0.0398 0.0395

FL-MFG 0.0825 0.0929 0.0989 0.1029

FL-MFGM 0.0718 0.0655 0.0438 0.0466

MaxBlockBack=12

MaxRTT=2000

FL-MF 0.0462 0.0441 0.0313 0.0304

FL-MFG 0.0489 0.0452 0.0404 0.0426

FL-MFGM 0.0461 0.0439 0.0330 0.0328

MaxBlockBack=100

MaxRTT=5000

FL-MF 0.0503 0.0470 0.0308 0.0308

FL-MFG 0.0518 0.0490 0.0508 0.0431

FL-MFGM 0.0510 0.0478 0.0328 0.0327

(a) MaxBlockBack=0, MaxRTT=1000 (b) MaxBlockBack=12, MaxRTT=1000

(c) MaxBlockBack=12, MaxRTT=2000 (d) MaxBlockBack=100, MaxRTT=5000

Fig. 3. Performance comparison of gradient compression and momentum correction on predic-

tion. Note: <FL-MF, FL-MFG> means the absolute value of the difference between the RMSE of FL-MF and FL-MFG.

<FL-MF, FL-MFGM> means the absolute value of the difference between the RMSE of FL-MF and FL-MFGM.

From Table 2, we find that FL-MF without gradient compression achieves highest

accuracy in most cases. The prediction accuracy of FL-MFGM is very close to that of

FL-MF. It is worth noting that, the RMSE values of FL-MFGM are lower than those

of FL-MF when Density = 50% and MaxBlockBack = 12, which means that the

prediction accuracy of FL-MFGM can be higher than that of FL-MF. With the increase

of Density, the RMSE values of FL-MF and FL-MFGM show a tendency of decreasing

which means the accuracy is improving, while the accuracy of the FL-MFG method
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without a decreasing trend is the lowest among these three methods. It reflects that

FL-MFGM and FL-MF are much more effective than FL-MFG.

To observe the effect of compression and momentum correction on the prediction

accuracy more clearly, we compute the absolute value of the RMSE difference between

FL-MF and FL-MFG and also compute it for FL-MF and FL-MFGM. The results are

shown in Fig. 3.

From Fig. 3, we can find that the difference between FL-MF and FL-MFG becomes

larger with the increasing Density, as well as between FL-MF and FL-MFGM. While

the maximum RMSE difference between FL-MF and FL-MFGM is 0.0071 and the

maximum difference between FL-MF and FL-MFG is 0.0634. Notably, with a fixed

Density, MaxRTT, and MaxBlockBack, the difference between FL-MF and FL- MFGM

is smaller than that between FL-MF and FL-MFG. It indicates that FL-MFGM which

employs gradient compression with momentum correction can approach the effect of

FL-MF with a very small difference (roughly less than 0.01 difference in RMSE values),

while the RMSE values of FL-MFG without momentum correction are larger than those

of FL-MF.

In view of the above experiments, we can conclude that gradient compression would

reduce prediction accuracy while momentum correction can rescover prediction accu-

racy. Therefore, our FL-MFGM model can achieve privacy preservation without losing

accuracy.

4.4 Impact of Sparsity (RQ3)

Sparsity plays an important role in our gradient compression method. As discussed in

Section 3.3, gradient sparsification can protect privacy from gradient attacks while it

would lead to the loss of prediction accuracy. To discuss the impact of sparsity on the

prediction accuracy of our FL-MFGM model, in this experiment, we set MaxBlockBack =
12, MaxRTT = 2000 and set the sparsity ratio = 0, 10%, 30%, 65%, 99%. The results

are shown in Table 3.

Table 3. Impact of sparsity ratio on model performance

Sparsity ratio Density=30% Density=50% Density=65% Density=95%

0 0.0462 0.0441 0.0313 0.0304

10% 0.0460 0.0442 0.0337 0.0320

35% 0.0462 0.0440 0.0342 0.0331

65% 0.0465 0.0440 0.0336 0.0326

99% 0.0464 0.0442 0.0340 0.0330

From Table 3, we can observe that when the sparsity ratio is fixed, the RMSE of

FL-MFGM shows a gradually decreasing trend with Density increasing. When we keep

Density constant, the prediction error is not significantly different when sparsity ratio is

changed. Specifically, when Density = 65%, the maximum RMSE difference between

different ratios obtains the largest value (about 0.0029), while Density = 10%, the

maximum RMSE difference between different ratios obtains the smallest value (about
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0.0002). The results show that the variation of sparsity has little effect on the predic-

tion accuracy of our model. It turns out that FL-MFGM can achieve high accuracy at

different sparsity even when the degree of sparsity ratio reaches 99%.

5 Conclusion and Future Work

In this paper, we propose a privacy-preserving and high-accuracy blockchain reliability

prediction approach based on federated matrix factorization with gradient compression

and momentum correction. Firstly, we propose a matrix factorization model based on

federated learning, which enables users to learn an effect global prediction without

sharing private data. Secondly, we use gradient compression method to defend against

gradient attacks by sparsifying the gradient matrix. Thirdly, we design the gradient

compression with momentum correction which fixes the accuracy degradation caused

by compression. Finally, the experimental results verify that our approach can improve

prediction accuracy while achieving privacy preservation. And the proposed approach

achieves a high gradient compression rate and reduces the communication bandwidth

without compromising the prediction accuracy.

In our future research, we plan to improve our model performance by considering

the impact of other block information, such as block height and block hash. We will also

explore ways to improve the model’s ability to resist attacks. In addition, our proposed

approach is based on the condition of trusted users and trusted servers, and further work

will consider the credibility of users and servers.
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